Effects of ANG-3070 in a Mouse Model of Alport Syndrome

Latha Paka, Natalia Prakash, Kai Jiang, Prakash Narayan, Itzhak Goldberg
Angion Biomedica Corp., Uniondale, NY

Presented at the American Society of Nephrology Kidney Week 2021 Virtual Congress, November 4–7, 2021
Disclosures

- All authors are employees of Angion Biomedica Corp.
- Study was funded by Angion Biomedica Corp.
- Medical writing support was provided by Paraskevi Briassouli, PhD of Eloquent Scientific Solutions and was funded by Angion Biomedica Corp.
Background – Alport Syndrome

- Alport syndrome
 - hereditary kidney disease that presents in childhood and progresses to end-stage kidney disease (ESKD) in adolescence\(^1\)
 - no cure and no treatment completely stops kidney failure

- Caused by mutations in the type IV collagen genes Col4a3, Col4a4 or Col4a5
 - reduced structural integrity of the glomerular basement membrane, triggering activation of fibrogenic cytokines, and causing proteinuria and fibrosis\(^2,3\)

- Aberrant signaling of receptor tyrosine kinases (RTK) shown in preclinical models of fibrotic kidney and lung diseases\(^4-6\)
 - platelet-derived growth factor receptor (PDGFR)
 - vascular endothelial growth factor receptor (VEGFR)
 - discoidin domain receptor (DDR)

- ANG-3070 is an orally bioavailable RTK inhibitor with selectivity for PDGFR\(\alpha/\beta\) and DDR1/2, among other tyrosine kinases

- ANG-3070 was tested in a preclinical model of AS using Col4a3 knockout mice (AS mice)
 - Alport mice develop kidney failure by 8–10 weeks of age

Objective: To evaluate the effect of ANG-3070 on AS in transgenic mice with a Col4a3 mutation

Study design

- 4-week-old AS mice randomized to Vehicle or ANG-3070 (25 mg/Kg, PO, BID) and treated for 5 weeks
- Age-matched, wild-type (WT) mice controls
- Spot urines at baseline, 4 and 5 weeks for proteinuria and protein to creatinine ratio (PCR)
- Fibrosis in renal tissue by hydroxyproline (HYP) content, Trichrome and picrosirius red staining (PSR)
- Collagen-1, TGFβ1, and αSMA determined by Western blot analysis and immunohistochemistry
- Blots were quantitated using calibrated densitometry
- Renal damage was assessed using H&E staining
- All histological analyses performed blindly by two observers using a 0–4 scale (0, normal; 4 ≥75% injured or stained)
ANG-3070 increased survival

- ANG-3070 treatment significantly decreased AS mouse mortality compared with AS-Vehicle mice \((P=0.03)\)
- Body and kidney weights were not significantly different between AS-Vehicle and AS-ANG-3070 mice
ANG-3070 reduced proteinuria and protein to creatinine ratio

- AS-Vehicle mice had significantly higher proteinuria and protein to creatinine ratio compared to WT mice.
- AS-ANG-3070 mice had significantly decreased proteinuria and protein to creatinine ratio compared to AS-Vehicle at 5 weeks but not 4 weeks post treatment.
ANG-3070 decreased renal damage

- ANG-3070 treatment significantly decreased renal damage score of AS mice compared with AS-Vehicle mice ($P=0.002$) determined from H&E-stained sections.
ANG-3070 reduced renal fibrosis

- ANG-3070 treatment significantly decreased kidney HYP in AS mice compared with AS-Vehicle mice ($P=0.002$)
- ANG-3070-treated AS mice had significantly decreased renal fibrosis scores determined by Trichrome staining and PSR staining sections compared with AS-Vehicle mice ($P=0.03$ and $P=0.001$ respectively)
ANG-3070 reduced fibrotic markers (Collagen-1, TGFβ1 and αSMA)

- Western blot analysis showed that ANG-3070 treatment reduced protein levels of fibrotic markers collagen-1, TGFβ1, and αSMA in AS mice compared with AS-Vehicle mice.

- ANG-3070-treated AS mice had reduced staining for kidney fibrotic markers collagen-1, TGFβ1 and αSMA compared with AS-Vehicle mice.
Conclusions

- ANG-3070 increased survival and reduced proteinuria and protein to creatinine ratio in a mouse model of AS
- Treatment with ANG-3070 reduced renal damage and renal fibrosis in AS mice
- ANG-3070 may represent a novel therapeutic for AS

Key takeaway: These data suggest that oral administration of the novel tyrosine kinase inhibitor ANG-3070, may be an effective treatment and novel therapeutic to Alport Syndrome