Effect of ANG-3070 in the Passive Heymann’s Nephritis Rat Model of Primary Proteinuric Kidney Disease

Christopher E. Pedigo, Zhijian Hu, Ping Zhou, Siobhan McCormack, Jingsong Li, Natalia Prakash, Anthony Pellicano, Prakash Narayan, Itzhak D. Goldberg

Angion Biomedica Corp., Uniondale, NY

Presented at the American Society of Nephrology Kidney Week 2021 Virtual Congress, November 4–7, 2021
Disclosures

- All authors are employees of Angion Biomedica Corp.
- Study was funded by Angion Biomedica Corp.
- Medical writing support was provided by Paraskevi Briassouli, PhD of Eloquent Scientific Solutions and was funded by Angion Biomedica Corp.
Background

- Primary proteinuric kidney diseases (PPKD) as a group are an important cause of end-stage kidney disease (ESKD)
- Many receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR), contribute to the progression of PPKDs to ESKD;¹ elevated expression of PDGFR ligands have been implicated in progressive glomerulonephritis²
- ANG-3070 is a novel inhibitor of multiple tyrosine kinases, including PDGFRα/β, and DDR1/2³
- The Passive Heymann Nephritis (PHN) model of renal dysfunction mimics immune complex disease due to podocyte-targeting antibodies, and is reminiscent of human membranous nephropathy and glomerulonephritis with nearly identical pathology⁴,⁵
 - In this model, intravenous administration of anti-FX1A serum to rats results in immune complex accumulation, slit diaphragm occlusion, podocyte foot process effacement, and proteinuria⁴

Objective: To evaluate the effects of ANG-3070 in a rat model of proteinuric PHN

Methods

- CD rats received anti-FX1A serum or saline on two consecutive days.
- Animals were randomized based on proteinuria levels, ensuring equivalent average protein to creatinine ratios (PCR) in each group, before beginning treatment.
- Nintedanib, a tyrosine kinase inhibitor that targets PDGFRα/β, FGFR1-3, and VEGFR1-3, was used as a comparator.
- Glomerular injuries were evaluated from periodic acid Schiff-stained kidneys on a scale of 0 (normal/no injury) to 4 (severe injury) by two observers and averaged.
- One-way analysis of variance with Tukey’s multiple comparisons test was used to determine significant differences among groups.
ANG-3070 treatment did not reduce survival

- No significant differences in survival among the sham, Vehicle, and ANG-3070 (all doses) groups.

- Survival was significantly decreased in the Nintedanib group versus sham and Vehicle Cohorts ($P<0.01$, Mantel-Haenszel Log Rank Test).

- Body mass and kidney mass were significantly reduced in Nintedanib-treated animals compared with Vehicle controls ($P<0.0001$), but there were no differences in body mass or kidney mass with ANG-3070 versus Vehicle or sham (data not shown).

1. Sham and vehicle curves are not visible as they are identical to the 15 mg/kg ANG-3070 group.
ANG-3070 reduced proteinuria

- Mean PCR at the end of the study was significantly reduced for the ANG-3070 100 mg/kg ($P=0.04$) and 15 mg/kg group ($P=0.05$), but not for the ANG-3070 50 mg/kg and Nintedanib group compared with Vehicle.
ANG-3070 reduced kidney fibrosis and glomerular damage

Kidney Fibrosis

(Dealing score is better)

<table>
<thead>
<tr>
<th>Group</th>
<th>Sham</th>
<th>Vehicle</th>
<th>15 mg/kg</th>
<th>50 mg/kg</th>
<th>100 mg/kg</th>
<th>Nintedanib</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg Hydroxyproline per kidney (SEM)</td>
<td>1600 ± 100</td>
<td>1500 ± 100</td>
<td>1400 ± 100</td>
<td>1300 ± 100</td>
<td>1200 ± 100</td>
<td>1100 ± 100</td>
</tr>
</tbody>
</table>

Glomerular Damage

(Dealing score is better)

<table>
<thead>
<tr>
<th>Group</th>
<th>Sham</th>
<th>Vehicle</th>
<th>15 mg/kg</th>
<th>50 mg/kg</th>
<th>100 mg/kg</th>
<th>Nintedanib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerular damage score (SEM)</td>
<td>4.5 ± 0.5</td>
<td>4.0 ± 0.5</td>
<td>3.5 ± 0.5</td>
<td>3.0 ± 0.5</td>
<td>2.5 ± 0.5</td>
<td>2.0 ± 0.5</td>
</tr>
</tbody>
</table>

* P<0.05 Sham vs All groups; # Nintedanib vs All groups
ANG-3070 reduced expression of PDGFRβ in kidney

- Induction of PHN was associated with an increase in PDGFRβ expression, which was significantly reduced with ANG-3070 treatment (P=0.04)
Pharmacokinetics of repeated doses

- Blood concentration over time shows two distinct peaks potentially indicating entero-hepatic recirculation of ANG-3070.
- C_{max} exposure to ANG-3070 increased in a greater than dose-proportional manner: a 3.3-fold and a 2.0-fold increase in dose resulted in approximately a 4.8-fold and 2.0-fold increase in C_{max}, respectively.
Conclusions

- ANG-3070 reduced proteinuria, renal fibrosis, glomerulosclerosis, and PDGFRβ expression levels in a rat model of membranous nephropathy.
- The lowest dose tested (15 mg/kg) had the lowest drug exposure and was sufficient to elicit the beneficial effects of ANG-3070.

Key Takeaway: These data suggest that twice-daily oral administration of the novel tyrosine kinase inhibitor ANG-3070 may be an effective treatment in PPKDs.